CSBPRNN: A New Hybridization Technique Using Cuckoo Search to Train Back Propagation Recurrent Neural Network
نویسندگان
چکیده
Nature inspired metaheuristic algorithms provide derivative-free solution to optimize complex problems. Cuckoo Search (CS) algorithm is one of the most modern addition to the group of nature inspired optimization metaheuristics. The Simple Recurrent Networks (SRN) were initially trained by Elman with the standard back propagation (SBP) learning algorithm which is less capable and often takes enormous amount of time to train a network of even a moderate size. And the complex error surface of the SBP makes many training algorithms prone to being trapped in local minima. This paper proposed a new meta-heuristic based Cuckoo Search Back Propagation Recurrent Neural Network (CSBPRNN) algorithm. The CSBPRNN is based on Cuckoo Search to train BPRNN in order to achieve fast convergence rate and to avoid local minima problem. The performance of the proposed CSBPRNN is compared with Artificial Bee Colony using BP algorithm, and other hybrid variants. Specifically OR and XOR datasets are used. The simulation results show that the computational efficiency of BP training process is highly enhanced when coupled with the proposed hybrid method.
منابع مشابه
Weight Optimization in Recurrent Neural Networks with Hybrid Metaheuristic Cuckoo Search Techniques for Data Classification
Recurrent neural network (RNN) has been widely used as a tool in the data classification. This network can be educated with gradient descent back propagation. However, traditional training algorithms have some drawbacks such as slow speed of convergence being not definite to find the global minimum of the error function since gradient descent may get stuck in local minima. As a solution, nature...
متن کاملA New Back-Propagation Neural Network Optimized with Cuckoo Search Algorithm
Back-propagation Neural Network (BPNN) algorithm is one of the most widely used and a popular technique to optimize the feed forward neural network training. Traditional BP algorithm has some drawbacks, such as getting stuck easily in local minima and slow speed of convergence. Nature inspired meta-heuristic algorithms provide derivative-free solution to optimize complex problems. This paper pr...
متن کاملCSLMEN: A New Optimized Method for Training Levenberg Marquardt Elman Network Based Cuckoo Search Algorithm
RNNs have local feedback loops within the network which allows them to shop earlier accessible patterns. This network can be educated with gradient descent back propagation and optimization technique such as second-order methods; conjugate gradient, quasi-Newton, Levenberg-Marquardt have also been used for networks training [14, 15]. But still this algorithm is not definite to find the global m...
متن کاملA New Cuckoo Search Based Levenberg-Marquardt (CSLM) Algorithm
Back propagation neural network (BPNN) algorithm is a widely used technique in training artificial neural networks. It is also a very popular optimization procedure applied to find optimal weights in a training process. However, traditional back propagation optimized with Levenberg marquardt training algorithm has some drawbacks such as getting stuck in local minima, and network stagnancy. This...
متن کاملImproved Cuckoo Search Based Neural Network Learning Algorithms for Data Classification Abdullah
Artificial Neural Networks (ANN) techniques, mostly Back-Propagation Neural Network (BPNN) algorithm has been used as a tool for recognizing a mapping function among a known set of input and output examples. These networks can be trained with gradient descent back propagation. The algorithm is not definite in finding the global minimum of the error function since gradient descent may get stuck ...
متن کامل